1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C.

نویسندگان

  • G Morfini
  • G Pigino
  • K Opalach
  • Y Serulle
  • J E Moreira
  • M Sugimori
  • R R Llinás
  • S T Brady
چکیده

Parkinson's disease (PD), a late-onset condition characterized by dysfunction and loss of dopaminergic neurons in the substantia nigra, has both sporadic and neurotoxic forms. Neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its metabolite 1-methyl-4-phenylpyridinium (MPP+) induce PD symptoms and recapitulate major pathological hallmarks of PD in human and animal models. Both sporadic and MPP+-induced forms of PD proceed through a "dying-back" pattern of neuronal degeneration in affected neurons, characterized by early loss of synaptic terminals and axonopathy. However, axonal and synaptic-specific effects of MPP+ are poorly understood. Using isolated squid axoplasm, we show that MPP+ produces significant alterations in fast axonal transport (FAT) through activation of a caspase and a previously undescribed protein kinase C (PKCdelta) isoform. Specifically, MPP+ increased cytoplasmic dynein-dependent retrograde FAT and reduced kinesin-1-mediated anterograde FAT. Significantly, MPP+ effects were independent of both nuclear activities and ATP production. Consistent with its effects on FAT, MPP+ injection in presynaptic domains led to a dramatic reduction in the number of membranous profiles. Changes in availability of synaptic and neurotrophin-signaling components represent axonal and synaptic-specific effects of MPP+ that would produce a dying-back pathology. Our results identify a critical neuronal process affected by MPP+ and suggest that alterations in vesicle trafficking represent a primary event in PD pathogenesis. We propose that PD and other neurodegenerative diseases exhibiting dying-back neuropathology represent a previously undescribed category of neurological diseases characterized by dysfunction of vesicle transport and associated with the loss of synaptic function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myricetin attenuated MPP(+)-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells.

Increasing evidence suggests that oxidative stress may be implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD), and anti-oxidation have been shown to be effective to PD treatment. Myricetin has been reported to have the biological functions of anti-oxidation, anti-apoptosis, anti-inflammation and iron-chelation. The aim of the present study is to investigate the ne...

متن کامل

Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation.

Paraquat, N-methyl-4-phenyl-1,2,3,6 tetrahydropyridine, and rotenone have been shown to reproduce several features of Parkinson's disease in animal and cell culture models. Although these chemicals are known to perturb dopamine homeostasis and induce dopaminergic cell death, their molecular mechanisms of action are not well defined. We have previously shown that paraquat does not require functi...

متن کامل

1-Methyl-4-phenylpyridinium induces synaptic dysfunction through a pathway involving caspase and PKCdelta enzymatic activities.

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration has been used, in various mammalian species, as an experimental model of Parkinson's disease. The pathogenesis for such pharmacologically induced Parkinson's disease involves 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. This metabolite produces rapid degeneration of nigrostr...

متن کامل

Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease.

Increasing evidence suggests that apoptosis may be the underlying cell death mechanism in the selective loss of dopaminergic neurons in Parkinson's disease. Because the inhibition of caspases provides only partial protection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP(+)) model of Parkinson's disease, we investigated the role of the proapoptotic c-J...

متن کامل

Diabetic Encephalopathy Affects Mitochondria and Axonal Transport Proteins

Introduction: Diabetic encephalopathy is described as any cognitive and memory impairments and associated with hippocampal degenerative changes, include neurodegenerative process and decreased number of living cell. Mitochondrial Diabetes (MD) appears fallowing activation of mutant mitochondrial DNA and is combination of diabetes and cognitive deficit. In this research we showed the correlation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 7  شماره 

صفحات  -

تاریخ انتشار 2007